Long range, low power: LoRaWAN and The Things Network

Rob Bricheno - rwhb2@cam.ac.uk - @rwhb2 - 2019

We will cover

- Why is this interesting?
- How does it work?
- What are the problems?
- What's out there?

• Raise your hand if...

-

- Raise your hand if...
 - You know what a microcontroller is

- Raise your hand if...
 - You know what a microcontroller is
 - You know how the internet works

- Raise your hand if...
 - You know what a microcontroller is
 - You know how the internet works
 - You know what "cloud computing" means

• Raise your hand if...

- You know what a microcontroller is
- You know how the internet works
- You know what "cloud computing" means
- You know how WiFi works

Why is this interesting?

Rob Bricheno

Cambridge – a smart city?

Internet of Nearby Things

- Ultra short range:
 - Near Field Communication (NFC)
- Wireless Personal Area Network (WPAN) ~2.5mW, ~10m
 - Bluetooth
 - Bluetooth Low Energy
 - Zigbee
 - Z-Wave
- Wireless Local Area Network (WLAN) ~80mW, 50m
 - WiFi

Internet of Far Away Things

- Cellular ~5000mW, 5km
 - GSM/GPRS
 - LTE

- Low Power Wide Area Network (LPWAN) ~20mW, ...?
 - Sigfox
 - NB-IOT
 - LoRaWAN!

- 20,000 devices per gateway
- 10 year battery life

LoRaWAN?

- Long Range Wide Area Network
 - An LPWAN using LoRa (Long Range) as the physical layer
- Cycleo founded 2009, patented LoRa
- Bought by Semtech 2012
- LoRa alliance founded 2015
 - IBM, MicroChip, Orange, Cisco, KPN, Swisscom, Semtech, Bouygues Telecom, Singtel and Proximus, etc...
- A network stack build on top of LoRa

Some LoRaWAN use cases

- Utility metering for smart buildings
- Autonomous irrigation and soil health monitoring
- Smart parking
- Cattle tracking
- Cold chain assurance
- Natural disaster prediction

The Things Network

- LoRaWAN implementation
- A running instance of that implementation
- A community of people using that instance
- Adopted by Smart Cambridge in 2019

How does it work?

- The whole thing
- The sensor
- LoRa RF
- The LoRaWAN standard
- TTN network stack

The Whole Thing

22.4°C

Example block diagram (level sensor)

How it might look (temperature sensor)

Desired workflow (sensor)

LoRa module

- Easy to use
- Certified
- May even have LoRaWAN stack (more later)

LoRa - a Chirp Spread Spectrum technology

• A linear, frequency modulated upchirp in the time domain:

Spreading factors

Comparasion of LoRa Spreading Factors: SF 7 to SF 12

Example transmission

....

Han

LoRa Symbles [8 preamble, 2 Sync, 5 Symbols]

Variables

- Spreading factor (7-12)
- Bandwidth (125kHz, 250kHz & 500kHz)
- Channels (frequency)
 - Regional
 - 8ish
 - UK & EU 867.1MHz \rightarrow 868.5MHz in .2MHz increments
 - Offcom adopts 2013/752/EU 25mW 1% duty cycle

LoRaWAN: many nodes talk to a gateway

RF considerations

RF considerations

• Avoid objects within the Fresnel zone

- including the ground!
- Place antenna as high as possible
- Keep the antenna polarisation vertical for both gateway and end nodes and use an omnidirectional antenna.

LoRaWAN classes

	Application				
LoRa MAC Class A (baseline) Class B (beacon) Class C (Continuous)					MAC MAC options
	Modulation				
EU 868	EU 433	US 915	AS 430		Regional ISM band

Uplink and downlink methodolgy

The network server

Applications and Devices

Personalization and Activation

- Over The Air Activation (OTAA)
 - Do a bit of personalization of the node, then "activate" it "over the air"
 - More secure
 - Allows network to assign channels
- Activiation By Personalization (ABP)
 - Configure everything on the node
 - Ties a device to a specific network
 - Frame counter issue (more later)

Required personalization for OTAA

- AppEUI
 - a global application ID
 - EUI64 Extended Unique Identifier, 64 bits
- DevEUI
 - a global end-device ID, EUI64
- AppKey
 - an AES-128 root key specific to the **end-device**

Activation – Session Keys

- Two unique AES128 session keys derived and stored during "join" process
- NwkSKey
 - used by the network to check the validity of messages
- AppSKey
 - used for encryption and decryption of the payload
- In Activation By Personalization, these session keys are programmed in to the node **instead** of the AppEUI, DevEUI and AppKey

A note on security

- Frame counters prevent replay attacks
- AES is symmetric encryption
- The network operator can (in theory) look at all of your data

To the Internet and beyond!

Popular integrations

- MQTT
 - Message Queuing Telemetry Transport
 - Publish/Subscribe model relying on a broker
- HTTP
 - Post to your API
- Node-RED
 - Free, self-host-able
- AWS IOT (or similar) data platform

Console

Excellent documentation

There are 7853 gateways up and running

(We're playing catch-up)

Strong community

ttnmapper.org

....

What are the problems?

Extremely low data rate

Data			Max payload
Rate	Configuration	bits/s	(bytes)
DR0	SF12/125kHz	250	59
DR1	SF11/125kHz	440	59
DR2	SF10/125kHz	980	59
DR3	SF9/125kHz	1760	123
DR4	SF8/125kHz	3125	230
DR5	SF7/125kHz	5470	230

Further limitations

Duty cycle etc (ISM bad regulations)

- For uplink, the maximum transmission power is limited to 25mW (14 dBm).
- For downlink (for 869.525MHz), the maximum transmission power is limited to 0.5W (27 dBm)
- There is an 0.1% and 1.0% duty cycle per day depending on the channel.
- Maximum allowed antenna gain +2.15 dBi.
- The Things Network fair use policy
 - The uplink airtime is limited to 30 seconds per day (24 hours) per node.
 - The downlink messages are limited to 10 messages per day (24 hours) per node.

Fighting operators

- Other LoRaWAN operators
- Other 868MHz technologies
- Packet broker?

Not "real time"

- Messages may be enqueued on the node indefinitely if it is not in range
- Messages might go missing altogether (up to you)

Regulatory issues...?

• FCC & CE certification

-

Professional kit

(c) Talkpool

DIY

DIY node

Special mention – pi-supply.com

Free Platforms

- io.adafruit.com
- IBM Watson IOT
- Wolkabout
- AWS, Google, Azure
- Node-RED on heroku or your Pi
- Smart Cambridge
- Roll your own!

What next?

- Sign up to The Things Network
- Get on Slack
- Make a node
- Test some data platforms
- Set up a gateway
- Do some mapping
- Learn certification?
- Think up experiments!

Thank you!

Rob Bricheno - rwhb2@cam.ac.uk - @rwhb2

Credits

- Internet of Things by https://www.flickr.com/photos/wilgengebroed/ CC BY-SA 3.0
- The Whole Thing from Jamali-Rad, Hadi & Campman, Xander & MacKay, Ian & Walk, Wim & Beker, Mark & van den Brand, Johannes & Jan Bulten, Henk & van Beveren, Vincent. (2018). IoT-based wireless seismic quality control. The Leading Edge. 37. 214-221. 10.1190/tle37030214.1.
- Example block diagram from Jamali-Rad, Hadi & Campman, Xander & MacKay, Ian & Walk, Wim & Beker, Mark & van den Brand, Johannes & Jan Bulten, Henk & van Beveren, Vincent. (2018). IoT-based wireless seismic quality control. The Leading Edge. 37. 214-221. 10.1190/tle37030214.1.
- Photograph of node by AVRcircuit on Tindie https://www.tindie.com/products/avrcircuit/loraland-battery-powered-lora-arduino-module/
- Workflow from Ma, Yushuang; Zhao, Long; Yang, Rongjin; Li, Xiuhong; Song, Qiao; Song, Zhenwei; Zhang, Yi. 2018. "Development and Application of an Atmospheric Pollutant Monitoring System Based on LoRa—Part I: Design and Reliability Tests." Sensors 18, no. 11: 3891.
- Wizard Oil photo by clotho98 CC BY-NC 2.0 https://www.flickr.com/photos/clotho98/5727265431/
- Upchirp by https://commons.wikimedia.org/wiki/User:Georg-Johann CC BY-SA 3.0
- LoRa simulations by Sakshama Ghoslya reproduced with permission https://www.sghoslya.com/
- Node image from "Sensors" https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387282/ CC BY 4.0
- LoRaWAN classes from the LoRaWAN specification 1.0.3 Copyright © 2019 LoRa Alliance[™] https://lora-alliance.org/resource-hub/lorawanr-specification-v103
- Uplink and downlink methodology for LoRaWAN classes from Polonelli T, Brunelli D, Marzocchi A, Benini L. Slotted ALOHA on LoRaWAN-Design, Analysis, and Deployment. Sensors (Basel). 2019;19(4):838.
 Published 2019 Feb 18. doi:10.3390/s19040838
- Fresnel zone and antenna guidance (c) mobilefish.com https://www.mobilefish.com/developer/lorawan/lorawan_quickguide_tutorial.html https://lora.readthedocs.io/en/latest/
- TTN logo and architecture (c) The Things Network https://www.thethingsnetwork.org/
- IRNAS outdoor gateway from https://www.irnas.eu/irnas-outdoor-lorawan-gateway/ CC BY-SA 4.0
- Pro Mini node image from Building a LoRa node and connecting it to The Things Network (TTN) Version 1.0 Frank Beks March, Robin Harris and Rob Miles https://usermanual.wiki/Document/BuildInstructions.554518190.pdf CC BY-NC 4.0
- Radio Featherwing Wiring image (c) Adafruit CC BY-SA 3.0